EU-MACS Coordinator: Prof. Adriaan Perrels, forename.surname@fmi.fi

About EU-MACS Project

Our goal is to improve matching of supply with demand

The overall goal of EU-MACS (EUropean MArket for Climate Services) is to make the wealth of climate information truly accessible and applicable for a large variety of potential climate service users. In cooperation with current and potential CS users the EU-MACS project will develop mechanisms that should assist both CS providers and users in better matching their products, capabilities, and needs, while at the same time also smoothing the processes for search, selection, tailoring, and (decision oriented) using of climate service products. This needs to be done without compromising the validity of the information while ensuring a continuation of scientifically validated improvements of the involved observation, modelling, data processing and reprocessing, database structure and access, data meta-information, data interpretation guidance, as well as service delivery technologies. For quite some user segments and for various climate service innovation options better matching of supply and demand and better organized meta-information does not suffice, but awareness levels and incentive structures and related regulation need to be considered as well. The project also addresses these decision making contexts of climate services at user and sector level.

No stone is left unturned – the diverse approach of EU-MACS

The EU-MACS project aims to identify constraints and enablers in the market for climate services so as to clarify and illustrate how the supply of and demand for climate services can be optimally matched, while accounting for differentiation in climate service products and their production, as well in the user needs and capabilities regarding climate services. To this end the project will:

  1. Analyze the generation, deployment and use of climate services, in terms of scientific and technical drivers, as well as of policy frameworks, ethical implications and economic provision modes
  2. Recognize the most significant scientific, technical, legal and socioeconomic market barriers in Europe.
  3. Assess the extent to which demand for specific climate services of potential users remained unsatisfied (i.e. cases without matches and with poor matches) and the extent to which potential users are deterred from using climate services due to lack of capacities, lack of access, difficulties in anticipating new possible uses, and other shortcomings
  4. Support coherence and prevention of duplicate work and generate synergy by collaborating with parallel conducted studies in the MARCO project
  5. Suggest alternative ways for more accurate and easier matching of climate services offer and demand, which together cover a differentiated climate service market and keep transaction costs low
  6. Improve the understanding of the possible foundations of climate service markets by integrating a quantitative willingness-to-pay analysis into the market development work.
  7. Develop mechanisms that ensure good market access for innovations in climate services content and deployment, as well as mechanisms that feed user needs back into the innovation process
  8. Identify policies and measures aimed at enhancing market development and stimulating the use of the proposed matching mechanisms, appropriate viable business models, and climate service innovations meaningful for the (end)users
  9. Develop and test the aforementioned alternative matching approaches and innovation promotion mechanisms in a collaborative market development setting by means of suitable procedures and facilities with close involvement of end-user and other stakeholder representatives, while assessing feasible approaches for quality assurance and broad acceptance of ethical principles of climate services
  10. Elaborate best practices and recommendations for policy-makers, climate service providers, climate service users, scientists, and other stakeholders with respect to regulation (e.g., supportive frameworks), investments (including provision modes), education & training, cooperation, and awareness raising so as to get the proposed and similar matching and innovation promotion approaches realized

Disseminate and promote the matching and innovation promotion approaches among relevant communities in Europe and beyond, inter alia in cooperation with existing bodies aimed at cooperation and dissemination in the climate services field (such as Climate Service Partnership, Global Facility for Climate Services, …..)

Climate services help managing opportunities and risks

To define climate services we employ the definition of climate services as formulated in the EC’s Climate Services Roadmap:

…., we attribute to the term a broad meaning, which covers the transformation of climate-related data — together with other relevant information — into customized products such as projections, forecasts, information, trends, economic analysis, assessments (including technology assessment), counselling on best practices, development and evaluation of solutions and any other service in relation to climate that may be of use for the society at large. As such, these services include data, information and knowledge that support adaptation, mitigation and disaster risk management (DRM).”

From the above mentioned EU definition it can deduced that the eventual purpose of climate services is risk management. It is important to realize that risk management is to be understood broadly i.e. ensuring a good understanding of both the opportunities and risks created by climate change. Opportunities and risks are often intertwined through implemented solutions.

Nevertheless, the prevailing orientation in CS provision to climate data generation and deployment seriously hinders the capability to appreciate how climate risks and opportunities fit into the wider risk portfolio that the actual or potential climate service user is facing. Other constraints the users may have are too high search and translation costs or “a principal-agent” problem where one single agent tries to serve several principal users with one set of information. Exclusivity of the value added information might also be a burden.

On the other hand several types of drivers of the CS market can be identified within this framework. These include for example legal obligations and proactive opportunity seeking. Acknowledgement of common interest appears to support climate services market, too.

Constraints and enablers of CS market can be understood within a larger conceptual framework

Casting climate services as an element of a risk and opportunity management framework

From the above mentioned EU definition it can deduced that the eventual purpose of climate services is risk management; Risk management for the society, area, sector or organization by which the climate services are applied. This means that the use of climate services is typically embedded in a risk framework relevant for the considered territorial or organizational body. It is important to realize that risk management is to be understood broadly i.e. ensuring a good understanding of both the opportunities and risks created by climate change. Opportunities and risks are often intertwined through implemented solutions. This double logic is for example typically embraced in the UK Adaptation strategy (Watkiss and Hunt 2012) and ever more Member States seem to integrate it in their climate adaptation strategies or even overall in their climate strategies (EEA 2014). We stress that, even though the purpose of climate services has often to do with CCA, the purposes of these services are manifold, including support for climate change mitigation action (e.g. optimal use of renewable energy) and input for new financial and insurance product development. This should be reflected in the climate services market development, also in this project.

Failure to understand the needs and capabilities of users is not trivial

Practically all outlooks, surveys and inventories conducted by national, EU and WMO agencies with backgrounds in (upstream) climate services provision tend to emphasize the vantage point of climate data generation and deployment, exceptions are Ludolph and von Flotow (2013), Blamey and Steynor (2014), and Lourenço et al (2016). This prevailing orientation seriously hinders the capability to appreciate how climate risks and opportunities fit into the wider risk portfolio that the actual or potential climate service user is facing. Eventually, this may have non-trivial consequences for the effectiveness of investments in risk reduction in various sectors, when sources of uncertainty (climatic, climate modelling, and climate observation related and other ones) are not appreciated in a comprehensive way.

There is a need to lower translation and search costs

A complicating feature is that many potential users may not have systematic risk management approaches that would integrate climate risks to other aspects of risk management. The use of climate services may follow from regulatory obligations, such as in the case of land use planning, but the risk framework – if any – of such a policy area may be patchy, making it difficult to identify the appropriate bundle of climate services. Regardless of whether there is an integrated risk framework the potential end-user may lack skills to properly judge alternative climate services products, as well as to anticipate possible uses of similar products. This hints at the needs of supplementary consultancy, information provision and articulation of expectations in the climate services field, where it remains to be assessed how to effectively and fairly organize such supplementary information and advice. Summarizing, these obstacles can be referred to as transaction and search cost. As above mentioned, the lowering of transaction cost often requires also measures outside the realm of economics, such as regulatory changes, education, and awareness raising.

Users can face “a principal-agent problem”

For various user groups climate service providers are facing a principal-agent problem at the user side, which – in short – means a mismatch between incentives, effects, and responsibilities of various actors in the same domain. The agent, e.g. a metropolitan planning department or a regional tourist board, which orders and channels the information, operates on behalf of a collection of eventual users (the principals). In such situations there is little guarantee that the principals receive the most suitable climate services. Apart from resource allocation and communication problems there is also an aggregation challenge, i.e. moving from diffuse needs to a clearly defined – yet flexible – product. At the supply side some expert organizations respond to this by offering standardized products, which allow for substantial user-specific tailoring. This follows from the feature that climate information provision enjoys economies of scale and scope.

Exclusivity of the value added information can be a burden

Although less easy to assess than the benefits of weather and seasonal projections, also climate services (at least in the narrower sense of climate change projections or close derivatives) are likely to generate societal benefits exceeding many times their costs, provided that they are rightly understood and used (Clements et al 2013; Anderson et al 2015). Therefore, policy frameworks, provision modes and ethical issues are deeply intertwined. In particular, the extent to which climate services-generated benefits can be straightforwardly monetized varies greatly, thereby hinting at roles for both public and private climate service providers. For example, private sector users are willing to pay for value added generating services usually in exchange for the exclusivity of the information. This is efficient for society under normal operations, provided no unduly profits are thereby created. Yet for disruptive risks (e.g., resulting from natural hazards) information should be shared so as to enable upkeep of societal resilience. There is evidence (e.g Tompkins and Eakin 2012) that private actions based on climate information could generate benefits in the public sphere. In this case the coordination and the commitment of private actors is essential, although the benefits of private actions do not directly accrue back to the private actors. In such cases the public-private exchange needs clear regulation and sometimes options for compensation so as to minimize ethical biases. Ethics in climate services is also related to quality assurance of data and communication of uncertainties tuned to capabilities, knowledge and vulnerabilities of users.

Four main types of drivers of CS market can be distinguished

A part of the demand for climate services is born out of legal obligations, e.g. to account for climate change effects in urban and infrastructure planning. On the other hand in the private sector the degree of acknowledgement of climate change as an element of risk assessment is varying greatly, with additional challenges owing to limitations in capability and in sector relevant climate information (i.e. leading to the perception of no relevant signals observed yet). For a start we distinguish four main types of drivers for the use of climate services, being: (1) legal obligations explicitly specifying that information on climate risks should be integrated in decision making or practices (such as in urban planning and permitting), (2) implied motivations owing to market led or legislative accountability for damage and/or malfunctioning (such as failure minimisation in networks), (3) proactive opportunity seeking (such as creating sales advantages with new construction solutions), and (4) science and curiosity. Only the fourth category is not directly driven by (broad scoped) risk management, but scientific interest in the use of climate services is in turn directly or indirectly driven by questions pertaining to risk management. From this categorization it can be inferred that legislation can help to create demand for CS, but is by no means the only driver. This ties in with observations by Klievink et al (2012) on public-private cooperation in data sharing. Furthermore, the use of CS is expected to engender activities that will further stimulate the demand for CS for reasons contained in the above categories 2 – 4. In other words widespread use of CS feed into a learning and transformation process (see below).

Acknowledging common interest appears to support climate services market

From a technical, economic and regulatory point of view the emergence of climate services ties in with general trends in (1) opening of public sector datasets for use by third parties, stimulated by the INSPIRE directive (de Vries et al 2011), and (2) creation of cooperative public-private information networks (e.g. regional resilience management, health care, comprehensive logistics management, etc.) (Klievink and Janssen 2014). The actual implementation of such facilities appear to be often more driven by acknowledging common interests than by the original legal initiation of the process (Klievink et al 2012), even though the adoption of new legislation may have an incubator function for innovations.

The project will focus on finance, tourism and urban planning sectors

EU-MACS project (EUropean MArket for Climate Services) analyses the climate services (CS) market structures and drivers, obstacles and opportunities from scientific, technical, legal, ethical, governance and socioeconomic vantage points. The analysis is grounded in economic and political science theories on how service markets with public and private features can develop, and how innovations may succeed. The study will engage a large diversity of stakeholders within finance, tourism and urban planning sectors in many ways, especially through the explorative market development exercises employing different co-design approaches. Next to reporting based analysis of market functioning and solutions, the protocols developed in the explorative market development exercises are meant for replication at large scale. The project is funded from the European Commission programme “H2020-EU.3.5.1. – Fighting and adapting to climate change”. Duration of the project is 24 months from November 2016 to October 2018.

In EU-MACS a well thought out set of methodologies are going to be applied

In this study two modes of analysis, static and dynamic, are conducted to feed into synthesis and policy recommendations for CS market development. The static level of analysis, aiming at identifying and investigating market failures and points of departure for innovations, is carried out in work package 1 (WP1) and entails various information collection approaches and comparative analysis. The question how to tackle these market failures is taken up in WP5 in conjunction with the findings regarding the exploitation of the innovation potential, resulting from the dynamic level analysis in WP2-WP4. The dynamic level analysis is framed in a Constructive Technology Assessment (CTA) approach. For two of the three focus sectors (Tourism and Urban planning) a Living Lab approach is used within the context of the CTA frame. For Urban planning -sector Social Network Analysis (SNA) will be utilized as well. For the third sector (Finance) a more formalized exploration approach will be followed, tuned to the existing risk management and decision support frameworks in the financial sector.

Methodological framework

Overview of the logic structure of the study (communication and management actions not shown)

A PEST framework is used for a multi-faceted assessment of the CS market

The PEST framework (or in this case PESTEL) is a common workhorse in market research with the purpose of a systematic screening of designated markets with respect to premeditated external influences on that market. (e.g. Oxford Learning Lab[1]). The assessment may include any external factor deemed useful, i.e. in this case Policies (governance), Economics, Science, Technology, Ethics, and Legislation (regulation), hence PESTEL instead of the original PEST (meaning Policies, Economics, Socio-cultural factors, Technology). In this study the external PESTEL factors are assessed for the purpose of (1) the static level analysis, i.e. identifying market failures and straightforward market opportunities as discussed in 1.3.1 and of (2) creating a point of departure for the dynamic level analysis. The actual dynamic level analysis will be supported by Constructive Technology Assessment (CTA), the Living Lab approach, and by CS offer selection experiments as realization of the collaborative market development exercises.

To enable the PESTEL framework to create a solid basis for the static and dynamic levels of analysis a supporting analysis of the use (and non-use) of CS will be carried out. The PESTEL framework is created and filled in WP1, and subsequently used to prepare the collaborative market development exercises in WP2-WP4. The PESTEL framework is taken up again in WP5 (Synthesis) to assess effective measures for alleviating or removing market failures and promote CS market opportunities.

A second supporting action is the assessment of the resourcing of CS, both from a supplier and user perspective. In conjunction with the resourcing alternative business models and willingness to pay (WTP) will be assessed. The resourcing and applied business models will be reviewed in WP1. Alternative business models and WTP will be assessed as part of the explorative market development exercises in WP2-WP4.

[1] http://www.oxlearn.com/arg_Marketing-Resources-PESTLE—Macro-Environmental-Analysis_11_31 visited 22.02.2016

Surveys, desk research and statistics will be deployed to review both actual and potential use of CS

For the static level analysis the study will employ assessments both addressing larger audiences by means of surveys, desk research, and statistics of climate service use, and addressing more focused audiences by means of (group)interviews, mini-surveys, CS product reviews to enable more detailed composition and analysis of use and choice behaviour as well as learning effects.

Exploring the data on service use and interviews of present and potential CS providers and users are used to construct a systematic profile on what types of CS are used and provided and how. The data on service use and contacts to existing users are directly available by the project partners, many of which are directly involved in CS provision, whereas good contacts with other CS providers also to several users can extend this statistics base.

Equally important for the analysis of CS usage is to understand what is not used or provided and why. For this reason, the research extends to cover also underutilization and non-users. Underutilization can be caused by CS users that nevertheless use less CS than they optimally could have, considering their risk management framework. Obviously underutilization of CS is also caused by non-users of CS. Underutilization can be approximated by comparing the use of CS for the same theme area in two different countries or regions, after correction for key differences between the regions. Non-users will be identified by comparing the service use information to knowledge about climate sensitivity of specific markets or sectors (besides direct climate sensitivity this can also refer to increasing adaptation and/or mitigation requirements). The assessment will also review the occurrence of non-optimal use of CS, i.e. when not using the most suitable data available.

This ‘static level’ analysis cast in the PEST framework, the creation of a multi-layer perspective on CS, and the creation of an interactional format for WP2-WP4 are conducted in WP1. This output as well as findings from parallel MARCO project provide the basis for the explorative dynamic components of the project realized in WP2-WP4. In these explorative components committed stakeholders from selected sectors are brought together to co-create and innovate improved and new climate services, and climate service supply chains. In due course the necessary conditions are identified under which existing and new CS could abound. These insights will be used to formulate recommendations for the different actors in the CS market, as well as for policy makers affecting the CS market indirectly in WP5 (Synthesis).

Constructive Technology Assessment is used as methodology for the dynamic level analysis

Two aspects mentioned in 1.3.1 are key in deriving an ad hoc co-productionist methodology. First, the apparent limited abilities of most CS providers to acquire sufficient affinity with users’ needs signals that CS supply chains should more consistently account for users’ perspectives. Second, potential users’ lack of skills to judge alternative climate services and anticipate possible innovative uses requires an attention on the learning processes of users themselves as a pre-condition for market growth.

Constructive Technology Assessment (CTA) is one of the best-known and successful methodologies in this field. Being originally developed at the University of Twente (UT, partner of this project), CTA aims to reduce the costs of learning during market introduction and dissemination of new technological products (Rip et al. 1995; Rip & Te Kulve 2008). CTA workshops take mainly the format of scenario-building exercises in which stakeholders are stimulated to interact in projecting possible outcomes of the technological products they are developing. CTA is well suited to identify constraints and enablers of the uptake of climate services since it:

  • addresses cases in which users’ expectations and decision frameworks are not clearly determined;
  • activates processes of demand articulation, during which user requirements (including modes of provision and ethical concerns) are formulated (sometimes for the first time);
  • supports multilevel processes of demand articulation not only at the level of individual users or organizations, but also at sector level;
  • leaves room to identify in progress which further stakeholders need to be involved – besides providers and potential users;
  • stimulate actors’ mutual learning and exploration of possible future developments,
  • as a consequence, CTA elaborates and suggests policy measures like agenda-building, sector-wide regulations, standards and common practices.

Based on insights obtained through the PESTEL analysis, supplemented by historical innovation experiences in CS and current CS innovation prospects, an ad-hoc CTA method will be elaborated in WP1. These methodological elements will contribute to inform the design of workshops organized in WP2-WP4, in which collaborative market development exercises are carried out. At a later stage, CTA will be used to analyze the joint output of WP2-WP4 in terms of implications for policies and measures as well as for further research needs regarding understanding of CS market development.

Collaborative market design will be explored in three CS user segments

Whereas Constructive Technology Assessment (CTA) provides a methodology to align innovation actors’ interests at the initial stages, Living Labs, Joint Fact Finding (JFF) and Social Network Analysis (SNA) are facilitating and shaping deliberation processes – in this case with the aim to improve CS market functioning and promote uptake of CS. Furthermore, Value Proposition Design (VPD) will be used to facilitate the generation of CS package alternatives.

  1. EU-MACS focuses in three sectors

Three CS user segments has been singled out as being of special interest: (WP2) Finance (incl. insurance), (WP3) Tourism, and (WP4) Urban planning. These sectors represent quite different yet significant types sensitivity to implications of climate change and climate policies. Furthermore, inadequate use, underutilization or even neglect of climate services in these sectors can have significant impacts on EU citizens’ and societies wellbeing and wealth. Currently Finance and Tourism are still sectors with vastly untapped potential for use of CS. For urban planning the use of CS is already more common, but complexities are high and by no means all needs are adequately served. A text box on the next page introduces the sectors further.

The implementation of Value Proposition Design will differ to some extent between the user segments in WP2 – WP4. The Finance sector attaches very high value to approaches that can be formalized and linked to their existing risk management and appraisal systems. For the other two sectors the methods will be more hybrid and embedded in a Living Lab approach.

  1. Value proposition approach

To ensure that the users needs are fully understood by CS providers appropriate methods and tools have to be deployed. UnternehmerTUM developed the methodology Business Design for facing those challenges in entrepreneurial and innovation projects. With proven principles of design and strategic management, sustainable business is identified, developed and realized. Best practice tools are condensed in the UnternehmerTUM business design method kit http://www.unternehmertum.de/business-design-method.html.

The Business Design method set can be used in any phase of the project. UnternehmerTUM distinguishes between the three phases, ‘identify chances’, ‘develop concepts’ and ‘implement business’. The guiding principles of Business Design form the framework of how UnternehmerTUM approaches tasks of innovation. In this way such factors as market requirements and customer needs will be better understood, timely communication with major interest groups supported, uncertainties more rapidly removed, creativity and the ability to find solutions increased, or the time until market entry accelerated. The principles are interdisciplinary work, human-centeredness, contextual observation, holistic approach, social prototyping and iterative steps.

When implementing business as it is aimed in the CS project the tool Value Proposition Design can be used to create products and services users/customers want (Osterwalder et al. 2014). Value Proposition Design helps to find out information about customers and what they want. Subsequently patterns of value creation can be easily recognized. Holding that knowledge value propositions of climate services are created and profitable business models are designed. The information for the value proposition have to be gathered from users/customers via interview. As fundamental principle for conducting interviews the Mom Test offers a guideline for customer conversations (Fitzpatrick 2013). The imparted foundational skills enables the interviewer to get honest answers from the user/customer. The tools mentioned shape an approach to address and join provider and user/customer of climate services within a given framework.

  1. Living labs

LL has been quite successful in boosting user driven, open innovation in different European regions so far. However, it is important to note that LL is not a brand new approach, rather a recombination of existing user-centred methods and tools, aimed to put the citizen/customer in focus of – not only development, but also deployment of – new product and service prototypes in real-life environments. Coherently, the LL approach extends its vision to the full product/service life cycle process, i.e. from the definition of an idea to the design of a solution, from validation and testing to user-centred support and maintenance of a commercialized product or service.

Obviously, such a holistic vision of the product/service life cycle has challenged the traditional distinction of roles and functions between producer (or provider) and user (or customer). We refer to co-creation (of a product or service) as the outcome of the convergent work of end users with other industrial and non-industrial stakeholders in a common prototyping environment. While the term triple helix was coined some years ago to describe the cooperation of Research, Government and Industry within a regional innovation system, the Living Lab approach has enhanced that scheme into the quadruple helix, by adding the end user/citizen/customer as the 4th stakeholder. In this sense, we also speak about 4P – or Private Public People Partnerships – as the most common way of user and stakeholder involvement in innovation related activities at local level.

LL has been extensively implemented to support urban innovation (http://www.openlivinglabs.eu/). A few experiences are also mentioned in the scientific literature about LL for Urban adaptation to climate change (e.g. https://www.gfdrr.org/innovation-lab; http://resilient-cities.iclei.org/). These experiences show the LL’s potentialities to actively involve a wide range of actors in a creative co-development process, and to guarantee the long term sustainability of the creative environment (World Bank, 2014). The project will implement a well known approach for organizing and managing the LL activities, the 7-step LEADERS approach. The 7 steps of the LEADERS approach are as follows (Molinari et al., 2013): Localize and identify your stakeholders; Establish a Living Lab PPP; Assess the relevance of «translocal» issues; Deploy an ICT infrastructure for the Living Lab; Establish a local and/or « translocal » 4P community (Private Public People Partnerships); Run one or more User Driven, Open Innovation pilots; Summarize and evaluate the results. This stepwise oriented approach brings with it the advantage of letting the individual urban labs autonomous in self-organizing the respective activities (under various profiles, i.e. tools trialed, adopted methodologies for user integration etc.) while at the same time being “constitutionally” oriented towards the convergence to a single, common model that will be among the key aspects of project’s permanent heritage.

Living Labs will be used for the urban planning sector (WP4).

  1. Joint Fact Finding

Joint fact-finding (JFF) is a collaborative approach for tackling wicked problems by bridging divides between science and policy insights and by reconciling different stakeholders’ views in situations. Moreover the decision context includes uncertainties and differences of opinion (and underlying values). Yet, finding common ground can be sufficient beneficial for all (or at least for a crucial majority) so as to motivate the effort of evaluation and convergence. It is typically a multi-stage process in which first agreement on the key questions and key shortfalls in information is sought. Subsequent steps aim to reduce the information shortfall and specify the criteria and evaluation approach(es). Gradually applications of JFF have been arising for adaptation planning and articulation of the consequent needs for climate services (Schenk et al 2016). JFF will be applied to the exercises for the Finance sector (WP2) and the Tourism sector (WP3).

  1. Structured choice processes

For the finance sector the evaluation of CS offers and responses will be based on the assumption that in this sector formal structured choice processes prevail. Various approaches can be considered for evaluation, such as Analytical Hierarchical Programming (AHP) and Elimination by Aspects (EBA). Especially the latter one may be assumed to be a relevant representation for selection of CS in the Finance sector. Such tools will be applied only later on in the market development exploration, initially the emphasis is on Joint Fact Finding.

  1. Social Network Analysis

With Social Network Analysis (SNA) complex networks of interactions taking place during a decision-making process, for example about climate change adaptation measures, can be analyzed. In other terms, the SNA will allow to investigate with whom the decision-makers interact during the process, and to analyze the mechanisms of interaction. In SNA, three different kinds of interaction mechanism are considered: i.e. information sharing, cooperative task performance, conflict. By means of SNA not only the main actors in a network but all potential stakeholders that need to be involved in the study can be identified, too. For what concerns the identification of potential barriers for CS mainstreaming in the climate adaptation decision-making processes, the analysis of the networks can be used to identify the main vulnerability in the network.

The EU-MACS consortium brings together leading experts of climate services

The nine partners and the Advisory Expert Committee (AEC) of the project are extremely well placed to analyze the current weaknesses in the climate services deployment approaches and systems, identify opportunities and potentials, rigorously test market development approaches, and engage a large variety of climate service users and other stakeholders. The excellence of the consortium can be summarized as:

  • An interdisciplinary, innovative yet fitting representation of relevant disciplines and expertise (market research, innovation economics, economics of (public) infrastructure, information economics, innovation management, market development, climate science, climate services, governance of (semi)public infrastructure, governance of information networks, users studies of technological development, science-technology and innovation governance studies)
  • Representing together the various stages in the climate services supply chain
  • Well connected with other major players in climate service provision, with end-users and end-user groupings, and with climate service umbrella organisations
  • Optimally positioned to provide feedback and linkages to the relevant platforms and research and innovation actions by involving stakeholders both as informants and as recipients of outreach actions.
  • Adopting a co-creative process (i.e. via Living Labs, Constructive Technology Assessment) in climate services development, involving (potential) climate service users, producers and facilitators in order to overcome the main barriers to climate service deployment.

Collaborating with parallel MARCO project will create synergy

The overarching call topic of climate services market research covers two topics, which are addressed in EU-MACS and the “sister project” MARCO (Market Research for a Climate services Observatory). The main goal in MARCO is to analyze the European and international characteristics of the climate services market and provide a foresight into future market developments.

Climate services have the potential to contribute substantially to climate change mitigation and adaptation. However, due to different reasons the market has not yet developed as rapidly as hoped for. To foster market development and support market uptake of climate services, MARCO gathers all relevant expertise necessary to achieve the project’s key objectives, which are:

  • Assess the EU market for climate services covering the whole value chain including providers and users of climate services,
  • Validate and enrich the findings of the market assessment in several demonstration cases,
  • Forecast future users’ needs and assess market growth until 2030,
  • Unveil opportunities and promote market growth by identifying gaps.

The MARCO consortium consists of eleven partners including market research experts, climate scientists, climate services practitioners, innovation actors. All these experts are lead by the EIT Climate KIC. Some partners such as the Finnish Meteorological Institute, the Climate Service Center Germany, Joanneum Research and UnternehmerTUM are partners in both projects.

Creating synergies between EU-MACS and MARCO will benefit from this duplication of partners. However, synergies between the two projects are identified in several similar but not identical fields of action:

  • Business modeling and innovation dynamics
  • Market inventories and stakeholder engagement
  • Some of the case studies.

The synergies will be created by means of bi-project reports, joint meetings and will be supported by a designated “synergy” manager.

UPDATE:

PARTNERS AND THE ADVISORY EXPERT COMMITTEE

Up